Инфракрасное излучение - Definition. Was ist Инфракрасное излучение
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Инфракрасное излучение - definition

РАЗНОВИДНОСТЬ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
Инфракрасный свет; Инфракрасный диапазон; Инфракрасные лучи; ИК-излучение; Инфракрасное зрение; ИК-лучи; Инфракрасные волны; Инфракрасный луч; Инфракрасное
  • Изображение собаки, полученное в инфракрасном излучении
  • Изображение девушки, полученное в инфракрасном диапазоне
  • Эксперимент Гершеля

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ         
не видимое глазом электромагнитное излучение в пределах длин волн ? от 1-2 мм до 0,74 мкм. Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Напр., слой воды в несколько см непрозрачен для инфракрасного излучения с ??1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, ок. 50% излучения Солнца; инфракрасное излучение испускают некоторые лазеры. Для его регистрации пользуются тепловыми (напр., болометрами) и фотоэлектрическими приемниками, а также специальными фотоматериалами
Инфракрасное излучение         

ИК излучение, инфракрасные лучи, электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм) и коротковолновым радиоизлучением (λ Инфракрасное излучение 1-2 мм). Инфракрасную область спектра обычно условно разделяют на ближнюю (λ от 0,74 до 2,5 мкм), среднюю (2,5-50 мкм) и далёкую (50-2000 мкм).

И. и. было открыто в 1800 английским учёным В. Гершелем, который обнаружил, что в полученном с помощью призмы спектре Солнца за границей красного света (т. е. в невидимой части спектра) температура термометра повышается (рис. 1). В 19 в. было доказано, что И. и. подчиняется законам оптики и, следовательно, имеет ту же природу, что и видимый свет. В 1923 советский физик А. А. Глаголева-Аркадьева получила радиоволны с λ Инфракрасное излучение 80 мкм, т. е. соответствующие инфракрасному диапазону длин волн. Таким образом, экспериментально было доказано, что существует непрерывный переход от видимого излучения к И. и. и радиоволновому и, следовательно, все они имеют электромагнитную природу.

Спектр И. и., так же как и спектр видимого и ультрафиолетового излучений, может состоять из отдельных линий, полос или быть непрерывным в зависимости от природы источника И. и. Возбуждённые атомы или ионы испускают линейчатые инфракрасные спектры. Например, при электрическом разряде пары ртути испускают ряд узких линий в интервале 1,014-2,326 мкм; атомы водорода - ряд линий в интервале 0,95-7,40 мкм. Возбуждённые молекулы испускают полосатые инфракрасные спектры, обусловленные их колебаниями и вращениями (см. Молекулярные спектры). Колебательные и колебательно-вращательные спектры расположены главным образом в средней, а чисто вращательные - в далекой инфракрасной области. Так, например, в спектре излучения газового пламени наблюдается полоса около 2,7 мкм, испускаемая молекулами воды, и полосы с λ ≈ 2,7 мкм и λ ≈ 4,2 мкм, испускаемые молекулами углекислого газа. Нагретые твёрдые и жидкие тела испускают непрерывный инфракрасный спектр. Нагретое твёрдое тело излучает в очень широком интервале длин волн. При низких температурах (ниже 800 К) излучение нагретого твёрдого тела почти целиком расположено в инфракрасной области и такое тело кажется тёмным. При повышении температуры доля излучения в видимой области увеличивается и тело вначале кажется тёмно-красным, затем красным, жёлтым и, наконец, при высоких температурах (выше 5000 К) - белым; при этом возрастает как полная энергия излучения, так и энергия И. и.

Оптические свойства веществ (прозрачность, коэффициент отражения, коэффициент преломления) в инфракрасной области спектра, как правило, значительно отличаются от оптических свойств в видимой и ультрафиолетовой областях. Многие вещества, прозрачные в видимой области, оказываются непрозрачными в некоторых областях И. и. и наоборот. Например, слой воды толщиной в несколько см непрозрачен для И. и. с λ > 1 мкм (поэтому вода часто используется как теплозащитный фильтр), пластинки германия и кремния, непрозрачные в видимой области, прозрачны в инфракрасной (германий для λ > 1,8 мкм, кремний для λ > 1,0 мкм). Чёрная бумага прозрачна в далёкой инфракрасной области. Вещества, прозрачные для И. и. и непрозрачные в видимой области, используются в качестве светофильтров для выделения И. и. Ряд веществ даже в толстых слоях (несколько см) прозрачен в достаточно больших участках инфракрасного спектра. Из таких веществ изготовляются различные оптические детали (призмы, линзы, окна и пр.) инфракрасных приборов. Например, стекло прозрачно до 2,7 мкм, кварц - до 4,0 мкм и от 100 мкм до 1000 мкм, каменная соль - до 15 мкм, йодистый цезий - до 55 мкм. Полиэтилен, парафин, тефлон, алмаз прозрачны для λ > 100 мкм. У большинства металлов отражательная способность для И. и. значительно больше, чем для видимого света, и возрастает с увеличением длины волны И. и. (см. Металлооптика). Например, коэффициент отражения Al, Au, Ag, Cu при λ = 10 мкм достигает 98\%. Жидкие и твёрдые неметаллические вещества обладают в И. и. селективным отражением, причём положение максимумов отражения зависит от химического состава вещества.

Проходя через земную атмосферу, И. и. ослабляется в результате рассеяния и поглощения. Азот и кислород воздуха не поглощают И. и. и ослабляют его лишь в результате рассеяния, которое, однако, для И. и. значительно меньше, чем для видимого света. Пары воды, углекислый газ, озон и др. примеси, имеющиеся в атмосфере, селективно поглощают И. и. Особенно сильно поглощают И. и. пары воды, полосы поглощения которых расположены почти во всей инфракрасной области спектра, а в средней инфракрасной области - углекислый газ. В приземных слоях атмосферы в средней инфракрасной области имеется лишь небольшое число "окон", прозрачных для И. и. (рис. 2). Наличие в атмосфере взвешенных частиц - дыма, пыли, мелких капель воды (дымка, туман) - приводит к дополнительному ослаблению И. и. в результате рассеяния его на этих частицах, причём величина рассеяния зависит от соотношения размеров частиц и длины волны И. и. При малых размерах частиц (воздушная дымка) И. и. рассеивается меньше, чем видимое излучение (что используется в инфракрасной фотографии), а при больших размерах капель (густой туман) И. и. рассеивается так же сильно, как и видимое.

Источники И. и. Мощным источником И. и. является Солнце, около 50\% излучения которого лежит в инфракрасной области. Значительная доля (от 70 до 80\%) энергии излучения ламп накаливания с вольфрамовой нитью приходится на И. и. (рис. 3). При фотографировании в темноте и в некоторых приборах ночного наблюдения лампы для подсветки снабжаются инфракрасным светофильтром, который пропускает только И. и. Мощным источником И. и. является угольная электрическая дуга с температурой Инфракрасное излучение 3900 К, излучение которой близко к излучению чёрного тела, а также различные газоразрядные лампы (импульсные и непрерывного горения). Для радиационного обогрева помещений применяют спирали из нихромовой проволоки, нагреваемые до температуры Инфракрасное излучение 950 К. Для лучшей концентрации И. и. такие нагреватели снабжаются рефлекторами. В научных исследованиях, например, при получении спектров инфракрасного поглощения в разных областях спектра применяют специальные источники И. и.: ленточные вольфрамовые лампы, штифт Нернста, глобар, ртутные лампы высокого давления и др. Излучение некоторых оптических квантовых генераторов - Лазеров также лежит в инфракрасной области спектра; например, излучение лазера на неодимовом стекле имеет длину волны 1,06 мкм, лазера на смеси неона и гелия - 1,15 мкм и 3,39 мкм, лазера на углекислом газе - 10,6 мкм, полупроводникового лазера на InSb - 5 мкм и др.

Приёмники инфракрасного излучения основаны на преобразовании энергии И. и. в другие виды энергии, которые могут быть измерены обычными методами. Существуют тепловые и фотоэлектрические приёмники И. и. В первых поглощённое И. и. вызывает повышение температуры термочувствительного элемента приёмника, которое и регистрируется. В фотоэлектрических приёмниках поглощённое И. и. приводит к появлению или изменению электрического тока или напряжения. Фотоэлектрические приёмники, в отличие от тепловых, являются селективными приёмниками, т. е. чувствительными лишь в определённой области спектра. Специальные фотоплёнки и пластинки - инфрапластинки - также чувствительны к И. и. (до λ = 1,2 мкм), и потому в И. и. могут быть получены фотографии.

Применение И. и. И. и. находит широкое применение в научных исследованиях, при решении большого числа практических задач, в военном деле и пр. Исследование спектров испускания и поглощения в инфракрасной области используется при изучении структуры электронной оболочки атомов, для определения структуры молекул, а также для качественного и количественного анализа смесей веществ сложного молекулярного состава, например моторного топлива (см. Инфракрасная спектроскопия).

Благодаря различию коэффициентов рассеяния, отражения и пропускания тел в видимом и И. и. фотография, полученная в И. и., обладает рядом особенностей по сравнению с обычной фотографией. Например, на инфракрасных снимках часто видны детали, невидимые на обычной фотографии (см. ст. Инфракрасная фотография ).

В промышленности И. и. применяется для сушки и нагрева материалов и изделий при их облучении (см. Инфракрасный нагрев), а также для обнаружения скрытых дефектов изделий (см. Дефектоскопия).

На основе фотокатодов, чувствительных к И. и. (для λ < 1,3 мкм), созданы специальные приборы - электроннооптические преобразователи (См. Электроннооптический преобразователь), в которых не видимое глазом инфракрасное изображение объекта на фотокатоде преобразуется в видимое. На этом принципе построены различные приборы ночного видения (бинокли, прицелы и др.), позволяющие при облучении наблюдаемых объектов И. и. от специальных источников вести наблюдение или прицеливание в полной темноте. Создание высокочувствительных приёмников И. и. позволило построить специальные приборы - теплопеленгаторы для обнаружения и пеленгации объектов, температура которых выше температуры окружающего фона (нагретые трубы кораблей, двигатели самолётов, выхлопные трубы танков и др.), по их собственному тепловому И. и. На принципе использования теплового излучения цели созданы также системы самонаведения на цель снарядов и ракет. Специальная оптическая система и приёмник И. и., расположенные в головной части ракеты, принимают И. и. от цели, температура которой выше температуры окружающей среды (например, собственное И. и. самолётов, кораблей, заводов, тепловых электростанций), а автоматическое следящее устройство, связанное с рулями, направляет ракету точно в цель. Инфракрасные локаторы и дальномеры позволяют обнаруживать в темноте любые объекты и измерять расстояния до них.

Оптические квантовые генераторы, излучающие в инфракрасной области, используются также для наземной и космической связи.

Лит.: Леконт Ж., Инфракрасное излучение, пер. с франц., М., 1958; Дерибере М., Практические применения инфракрасных лучей, пер. с франц., М.-Л., 1959; Козелкин В. В., Усольцев И. Ф., Основы инфракрасной техники, М., 1967; Соловьев С. М., Инфракрасная фотография, М., 1960; Лебедев П. Д., Сушка инфракрасными лучами, М.-Л., 1955.

В. И. Малышев.

Рис. 1. Опыт В. Гершеля. Термометр, помещенный за красной частью солнечного спектра, показал повышенную температуру по сравнению с контрольными термометрами, расположенными сбоку.

Рис. 2. Кривая пропускания атмосферы в области 0,6 - 14 мкм. Полосы - "окна" прозрачности: 2,0 - 2,5 мкм, 3,2 - 4,2 мкм, 4,5 - 5,2 мкм, 8,0 - 13,5 мкм. Полосы поглощения с максимумами при λ = 0,93; 1,13; 1,40; 1,87; 2,74 мкм принадлежат пара́м воды; при λ = 2,7 и 4,26 мкм - углекислому газу и при λ ≈ 9,5 мкм - озону.

Рис. 3. Кривые излучения абсолютно чёрного тела A и вольфрама B при температуре 2450 К. Заштрихованная часть - излучение вольфрама в инфракрасной области; интервал 0,4-0,74 мкм - видимая область.

Инфракрасное излучение         
Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волныДлина электромагнитной волны в вакууме. λ = 0,74 мкм и частотой 430 ТГц) и микроволновым радиоизлучением (λ ~ 1—2 мм, частота 300 ГГц).

Wikipedia

Инфракрасное излучение

Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм и частотой 430 ТГц) и микроволновым радиоизлучением (λ ~ 1—2 мм, частота 300 ГГц).

Инфракрасное излучение составляет большую часть излучения ламп накаливания, около 50 % излучения Солнца; инфракрасное излучение испускают некоторые лазеры. Для его регистрации пользуются тепловыми и фотоэлектрическими приёмниками, а также специальными фотоматериалами.

В силу большой протяженности инфракрасного диапазона оптические свойства веществ в инфракрасном излучении могут значительно меняться, в том числе отличаясь от их свойств в видимом излучении.

Beispiele aus Textkorpus für Инфракрасное излучение
1. Вот головка самонаведения ракеты использует инфракрасное излучение.
2. Кожаная обивка обработана новыми пигментами, которые отражают инфракрасное излучение и таким образом предотвращают чрезмерный нагрев.
3. Они прикреплены к потолку и излучают и инфракрасное излучение для роботов, и видимое - для зрителей.
4. Затем включается инфракрасное излучение - это укрепляет иммунную систему и способствует выведению токсинов.
5. Причем два из них со специальным энергоэффективным напылением, которое не выпускает тепловое (инфракрасное) излучение из квартиры.
Was ist ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ - Definition